2014 FAA Worldwide Airport Technology Transfer Conference

REHABILITATION OF WATER-DAMAGED RUNWAY COMPOSITE PAVEMENTS

Seiya HAMA

Narita International Airport Corporation

Yoshitaka HACHIYA & Takaharu NISHIKAWA

SCOPE

JAPAN

Introduction

- South end 750 m of Runway A of NRT
 - Required to fully use
- Endmost 150 m section
 - Required to be more durable
- Composite pavement
 - Asphalt mixture (AM) layers placed on continuously reinforced concrete (CRC) slabs
 - Constructed in 2011 autumn 2012 spring
- Some signs of distress
 - Appeared several months after construction

Introduction (Cont'd)

- Tentative repairs
 - Cut & overlay of AM in the same way
 - Some signs of distress were also appeared
- Causes of distress
 - Studied in several different ways
 - Classified into two kinds
 - Intrusion of water into AM
 - Low stability of AM
- Rehabilitation method
 - Cut & overlay of AM in the proposed way
 - Installation of water draining facilities

Narita International Airport

Composite Pavement: Plan

Composite Pavement: Section

Signs of Distress on Surface

- Composite pavements
 - Open to aircraft operation in April 2012
- Some signs of distress
 - Appeared on surface a few months later

⁻⁻⁻⁻ Black & White spots

Flow of AM around lighting

Signs of Distress (1)

Dull sound at hammer tapping tests Flow of AM around airport lighting

Signs of Distress (2)

Black spots

White spots

Stains at construction joints

Study on Causes of Distress

- Properties of cored samples taken from AM
 - Conditions of cores were visually inspected.
 - Various properties were measured in the cores.
 - Chemical compositions of the spots and stains were identified.
- Structural conditions of pavements
 - The response of composite pavement to aircraft loads was analyzed by using 3D-FEM

Conditions and Properties (1)

- Fracture of AM
 - Marks of slippage between AM and CRC
 - Fractured planes in AM and at AM interface

Found between AM and CRC, and in the fractured planes.

Water content of AM (unit: %)

Area	Surface	,
Dull sounding	0.43	0.81
Sound	0.16	0.26

Conditions and Properties (2)

- Thickness
 - Ave. AM thickness in concave areas is 33, 40 mm in surface, binder course, respectively
- Dynamic stability of surface course AM
 - Dynamic stability (DS) satisfied the specification of DS > 300 times/mm

Dynamic stability

Sound Area		Dull sounding area		
413	458	510	960	

(unit: times/mm)

Chemical Compositions

- Black spots
 - Composed of the same substances as asphalt emulsion and asphalt
- White spots
 - Recognized as inorganic and containing calcium carbonates
 - No obvious differences at fractured planes and others
- Stains at construction joint
 - Made of the same substances as white spots

Structural Analysis with 3D-FEM

Pavement modeling

Analytical conditions

CASE	Temperature	Bonding at interface
1	Surface = Binder	Fully bonded
2	Surface > Binder	Fully bonded
3	Surface > Binder	Separated

Results of Analysis (1)

- In CASEs 1 and 2, stress between AM and CRC is larger than AMs.
- In CASE 3, stress between AMs is much larger than AM and CRC.

CASE 2

CASE 3

Results of Analysis (2)

- Stress in CASE 3 is lager than CASEs 1 and 2.
- Little risk of separation between AMs as long as the bonding is secured.

CA

Causes of Signs of Distress

- Dull sound at hammer tapping tests
 - Insufficient stability of AM
 - DS was lower than the new standard
 - Air void was below the standard
 - Water remained in AM
 - Might cause blistering
- Black & white spots and stains at joints
 - Asphalt exfoliation & efflorescence from concrete were found
- Flow of AM around airport lighting
 - Insufficient stability of AM

Causes of Major Distress

- Intrusion of water into AM
 - AM layers with low air voids were surrounded by CRC on the bottom and all sides.
 - Once water has permeated the pavement, it cannot naturally escape from it.
- Low stability of AM
 - Stability of AM insufficient to carry heavy aircraft loads resulted in plastic deformation progressed by repeated load applications.

Rehabilitation Plan (1)

- Countermeasures against Intrusion of water into AM (1)
 - Pavement structure
 - PM DGA of 60 mm thickness and 4.5% air void
 - PM drainage asphalt of 40 mm thickness and 20% air void (about 0.01 cm/s permeability)
 - Emulsified PM asphalt tack coat

Rehabilitation Plan (2)

- Countermeasures against Intrusion of water into AM (2)
 - Water draining facilities
 - Transverse open grooves of 6 10 mm width
 - Wider ditches filled with drainage asphalt

Rehabilitation Plan (3)

- Countermeasures against low stability of AM
 - Asphalt mixture with DS > 3,000 times/mm is required.
 - PMA Type II is adopted for surface course
 - PMA Type H is adopted for binder course

Item	Straight (40 – 60)	PMA	
		II	Н
Softening point (°C)	47 – 55	> 56.0	> 80.0
Ductility at 15°C (cm)	> 10	> 50	-
Toughness at 25°C (Nm)	-	> 8.0	> 20
Tenacity at 25°C (Nm)	-	> 4.0	-

Summary

- Causes of distress in composite pavements
 - Intrusion of water in composite pavements
 - Low stability of asphalt mixtures
- Rehabilitation methods
 - Pavement structure
 - Water draining facilities
 - Asphalt mixtures

